
    /_i'                        d dl mZ d dlmZmZmZ d dlmZmZ d dl	m
Z
 d dlmZ erd dlmZ d dlmZ d dlmZ d d	lmZ  G d
 de      ZddZddZddZddZddZddZddZ	 	 d	 	 	 	 	 ddZg dZy)    )annotations)TYPE_CHECKINGAnyNoReturn)ExprKindExprNode)flatten)Expr)Iterable)timezone)DType)TimeUnitc                  D    e Zd Zd	dZd
dZd
dZd
dZddZddZddZ	y)Selectorc                &    t        | j                   S N)r
   _nodes)selfs    Q/var/www/html/land_sniper/venv/lib/python3.12/site-packages/narwhals/selectors.py_to_exprzSelector._to_expr   s    T[[!!    c                    t        |t              rd}t        |      | j                         j	                  t        t        j                  d|d            S )Nz=unsupported operand type(s) for op: ('Selector' + 'Selector')__add__T
str_as_lit)
isinstancer   	TypeErrorr   _append_noder   r   ELEMENTWISE)r   othermsgs      r   r   zSelector.__add__   sH    eX&QCC. }}++X))9eM
 	
r   c           	         t        |t              r-| j                  t        t        j
                  d|dd            S | j                         j                  t        t        j
                  d|d            S )N__or__Tr   allow_multi_outputr   r   r   r   r   r   r   r   r   r    s     r   r#   zSelector.__or__   sk    eX&$$((#'+  }}++X))8UtL
 	
r   c           	         t        |t              r-| j                  t        t        j
                  d|dd            S | j                         j                  t        t        j
                  d|d            S )N__and__Tr$   r   r&   r'   s     r   r)   zSelector.__and__,   sk    eX&$$((#'+  }}++X))9eM
 	
r   c                    t         r   NotImplementedErrorr'   s     r   __rsub__zSelector.__rsub__;       !!r   c                    t         r   r+   r'   s     r   __rand__zSelector.__rand__>   r.   r   c                    t         r   r+   r'   s     r   __ror__zSelector.__ror__A   r.   r   N)returnr
   )r    r   r3   r
   )r    r   r3   r   )
__name__
__module____qualname__r   r   r#   r)   r-   r0   r2    r   r   r   r      s%    "


"""r   r   c                 b    t        |       }t        t        t        j                  d|            S )aj  Select columns based on their dtype.

    Arguments:
        dtypes: one or data types to select

    Examples:
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pa.table({"a": [1, 2], "b": ["x", "y"], "c": [4.1, 2.3]})
        >>> df = nw.from_native(df_native)

        Let's select int64 and float64  dtypes and multiply each value by 2:

        >>> df.select(ncs.by_dtype(nw.Int64, nw.Float64) * 2).to_native()
        pyarrow.Table
        a: int64
        c: double
        ----
        a: [[2,4]]
        c: [[8.2,4.6]]
    zselectors.by_dtype)dtypes)r	   r   r   r   SELECTOR)r9   	flatteneds     r   by_dtyper<   E   s(    . IHX..0DYWXXr   c                L    t        t        t        j                  d|             S )aw  Select all columns that match the given regex pattern.

    Arguments:
        pattern: A valid regular expression pattern.

    Examples:
        >>> import pandas as pd
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pd.DataFrame(
        ...     {"bar": [123, 456], "baz": [2.0, 5.5], "zap": [0, 1]}
        ... )
        >>> df = nw.from_native(df_native)

        Let's select column names containing an 'a', preceded by a character that is not 'z':

        >>> df.select(ncs.matches("[^z]a")).to_native()
           bar  baz
        0  123  2.0
        1  456  5.5
    zselectors.matchespatternr   r   r   r:   r>   s    r   matchesrA   `   s    , HX..0CWUVVr   c                 H    t        t        t        j                  d            S )u  Select numeric columns.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [4.1, 2.3]})
        >>> df = nw.from_native(df_native)

        Let's select numeric dtypes and multiply each value by 2:

        >>> df.select(ncs.numeric() * 2).to_native()
        shape: (2, 2)
        ┌─────┬─────┐
        │ a   ┆ c   │
        │ --- ┆ --- │
        │ i64 ┆ f64 │
        ╞═════╪═════╡
        │ 2   ┆ 8.2 │
        │ 4   ┆ 4.6 │
        └─────┴─────┘
    zselectors.numericr@   r7   r   r   numericrC   y   s    . HX..0CDEEr   c                 H    t        t        t        j                  d            S )u}  Select boolean columns.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
        >>> df = nw.from_native(df_native)

        Let's select boolean dtypes:

        >>> df.select(ncs.boolean())
        ┌──────────────────┐
        |Narwhals DataFrame|
        |------------------|
        |  shape: (2, 1)   |
        |  ┌───────┐       |
        |  │ c     │       |
        |  │ ---   │       |
        |  │ bool  │       |
        |  ╞═══════╡       |
        |  │ false │       |
        |  │ true  │       |
        |  └───────┘       |
        └──────────────────┘
    zselectors.booleanr@   r7   r   r   booleanrE      s    6 HX..0CDEEr   c                 H    t        t        t        j                  d            S )uG  Select string columns.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
        >>> df = nw.from_native(df_native)

        Let's select string dtypes:

        >>> df.select(ncs.string()).to_native()
        shape: (2, 1)
        ┌─────┐
        │ b   │
        │ --- │
        │ str │
        ╞═════╡
        │ x   │
        │ y   │
        └─────┘
    zselectors.stringr@   r7   r   r   stringrG      s    . HX..0BCDDr   c                 H    t        t        t        j                  d            S )u  Select categorical columns.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})

        Let's convert column "b" to categorical, and then select categorical dtypes:

        >>> df = nw.from_native(df_native).with_columns(
        ...     b=nw.col("b").cast(nw.Categorical())
        ... )
        >>> df.select(ncs.categorical()).to_native()
        shape: (2, 1)
        ┌─────┐
        │ b   │
        │ --- │
        │ cat │
        ╞═════╡
        │ x   │
        │ y   │
        └─────┘
    zselectors.categoricalr@   r7   r   r   categoricalrI      s    2 HX..0GHIIr   c                 H    t        t        t        j                  d            S )a  Select all columns.

    Examples:
        >>> import pandas as pd
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pd.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
        >>> df = nw.from_native(df_native)

        Let's select all dtypes:

        >>> df.select(ncs.all()).to_native()
           a  b      c
        0  1  x  False
        1  2  y   True
    zselectors.allr@   r7   r   r   allrK      s    " HX..@AAr   Nc                N    t        t        t        j                  d| |            S )a  Select all datetime columns, optionally filtering by time unit/zone.

    Arguments:
        time_unit: One (or more) of the allowed timeunit precision strings, "ms", "us",
            "ns" and "s". Omit to select columns with any valid timeunit.
        time_zone: Specify which timezone(s) to select

            * One or more timezone strings, as defined in zoneinfo (to see valid options
                run `import zoneinfo; zoneinfo.available_timezones()` for a full list).
            * Set `None` to select Datetime columns that do not have a timezone.
            * Set `"*"` to select Datetime columns that have *any* timezone.

    Examples:
        >>> from datetime import datetime, timezone
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>>
        >>> utc_tz = timezone.utc
        >>> data = {
        ...     "tstamp_utc": [
        ...         datetime(2023, 4, 10, 12, 14, 16, 999000, tzinfo=utc_tz),
        ...         datetime(2025, 8, 25, 14, 18, 22, 666000, tzinfo=utc_tz),
        ...     ],
        ...     "tstamp": [
        ...         datetime(2000, 11, 20, 18, 12, 16, 600000),
        ...         datetime(2020, 10, 30, 10, 20, 25, 123000),
        ...     ],
        ...     "numeric": [3.14, 6.28],
        ... }
        >>> df_native = pa.table(data)
        >>> df_nw = nw.from_native(df_native)
        >>> df_nw.select(ncs.datetime()).to_native()
        pyarrow.Table
        tstamp_utc: timestamp[us, tz=UTC]
        tstamp: timestamp[us]
        ----
        tstamp_utc: [[2023-04-10 12:14:16.999000Z,2025-08-25 14:18:22.666000Z]]
        tstamp: [[2000-11-20 18:12:16.600000,2020-10-30 10:20:25.123000]]

        Select only datetime columns that have any time_zone specification:

        >>> df_nw.select(ncs.datetime(time_zone="*")).to_native()
        pyarrow.Table
        tstamp_utc: timestamp[us, tz=UTC]
        ----
        tstamp_utc: [[2023-04-10 12:14:16.999000Z,2025-08-25 14:18:22.666000Z]]
    zselectors.datetime	time_unit	time_zoner@   rM   s     r   datetimerP      s,    h  		
 r   )rK   rE   r<   rI   rP   rA   rC   rG   )r9   z3DType | type[DType] | Iterable[DType | type[DType]]r3   r   )r?   strr3   r   )r3   r   )N)*N)rN   z$TimeUnit | Iterable[TimeUnit] | NonerO   z7str | timezone | Iterable[str | timezone | None] | Noner3   r   )
__future__r   typingr   r   r   narwhals._expression_parsingr   r   narwhals._utilsr	   narwhals.exprr
   collections.abcr   rP   r   narwhals.dtypesr   narwhals.typingr   r   r<   rA   rC   rE   rG   rI   rK   __all__r7   r   r   <module>r\      s    " / / ; # (!%(1"t 1"hY6W2F4F<E4J8B* 7;IT;3;F; ;|	r   